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decreased value for the substrate thickness. For example, it has

been found that a 195-pm substrate of pure GaAs has almost the

same characteristics as a 200-pm substrate with a 2-pm polyimide

layer on top, for the same linewidth. However, it would be

preferable to be able to include a suitable routine which could

calculate single and coupled line parameters for multidielectric

structures.
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Characteristic Impedance of Transmission Lines with

Arbitrary Dielectrics under the TEM Approximation

YANG NAIHENG AND ROGER F. BARRINGTON, FELLOW, IEEE

A5.stract — This paper gives a procedure for computing the characteristic

impedances of TEM or quasi-TEM transmission lines with arbitrary cross

sections and arbitrary dielectrics. Special consideration is given to conduc-

tors of finite cross-sectional extent. The solution is obtained by the method

of moments using pulse functions for the expansion of charge density and

point matching for testing. Numerical examples are given and compared

with solutions obtained by other methods.

I. INTRODUCTION

Recently, a general procedure for computing the transmission-

line parameters for a multiconductor transmission line in a

multilayered dielectric medium was published [1]. The solution

was obtained by the method of moments [2] using pulse functions

for expansion of the free and bound charge densities, and point

matching for testing. The solution made use of the fact that the

ground conductor was an infinite conducting plane. If no infinite

conducting plane is present, the solution must be modified.

This paper considers the modification for a two-conductor

transmission line of arbitrary cross section with arbitrary num-

bers of dielectrics. Strictly speaking, if the field exists in two or

more different dielectrics. the transverse electromagnetic (TE~
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mode cannot exist, but it will be a good approximation to the

lowest order mode if the cross-sectional dimensions are small in

terms of wavelengths. Our analysis is based on the approximation

that the propagating mode is almost TEM, or quasi-TEM.

II. FORMULATION

Under the quasi-TEM approximation, the electric-field distri-

bution is a two-dimensional electrostatic problem. This static-field

problem for the two-conductor case can be solved for the electro-

static capacitance Cd. (The subscript” d” denotes “dielectrics are

present.”) Under the quasi-TEM approximation, the magnetic-

field distribution is a two-dimensional magnetostatic problem.

This static-field problem for the two-conductor case, under the

assumption that all permeabilities are p. (no magnetic media), is

conjugate to the electrostatic problem with all permittivities (o.

This electrostatic problem can be solved for the capacitance CO.

(The subscript “ O“ denotes “no dielectrics present,” i.e., all

media have permittivity .sO.) The TEM characteristic impedance

of the structure is then

‘0=““& (1)

where U. is the velocity of light in free space. It is therefore

sufficient to discuss only the electrostatic problem of a two-con-

ductor transmission line with multiple dielectric regions.

Fig. 1 shows the cross section of the transmission line to be

considered. Here ,41 and ~2 are cross sections of two perfect

conductors, and Do, Dl,. . . . are cross sections of dielectrics with

permittivities co, c1,. . ., respectively. All cross sections are in the

x – y plane. The line is assumed to be uniform in the z direction.

To calculate the capacitance between ,41 and A*, we place equaf

but opposite charges on Al and A ~. This charge resides as free

charge on the surfaces of the conductors. Since each dielectric is

homogeneous and without free charge, all bound charge (due to

polarization) resides on the surfaces of the dielectrics. We denote

the interfaces as II, 12,. ... as shown in Fig. 1. On a conductor-

to-dielectric interface, such as 11 and 12, a free-charge density

‘F exists on the conductor and a bound-charge density aP exists

on the dielectric. The total charge density UT on the conductor

-to-dielectric interface is then

UT= UF+ UP. (2)

On a dielectric-to-dielectric interface, the total charge density is

bound charge only.

The charge densities on each interface are functions of posi-

tion. The electrostatic potential @ at position p due to all charges

UT at position # will be the superposition

2;:o~,:(P’)lnlP- P’ld”+k (3)4(P)=—

where k is a constant that depends on the choice of reference

potential (For two-dimensional problems, the potential at infin-

ity is infinite unless the total net charge is zero.) The integration

in (3) is over all interfaces on which a total charge exists. Fig. 2

illustrates the position vectors and the increment of charge for

the integral (3). The introduction of the constant k into (3) is the

principal difference between the two-conductor case being con-

sidered here and the original case with a ground plane considered

in [1].

If conductor Al is at potential ~1 and conductor A ~ is at

potential Vz, then

{
+(P)= ::

p on 11

pon 12”
(4)

Fig. 1. Cross sectlorr of a

IY

two-conductor transmission line with arbitrary

dielectric regions.

1/

o
x

Fig. 2. Source and field position vectors.

Fig. 3. Reference dmsctions for n and E.

On a dielectric-to-dielectric interface we have continuity of the

normal component of the electric displacement vector, or

CIn.v+l(p) = c2n Vjr2(p), ponl,, lb,.... (5)

Here, subscripts 1 and 2 denote side 1 and side 2 of the interface,

and n is the unit normal vector, as shown in Fig. 3. Equations (4)

and (5), with @ given by (3), are integro-differential equations to

be solved for UT(p).

Once UT is found, the free-charge densities on conductors Al

and A z can be calculated from

OF = cro~, on 11and 12. (6)

Here, c, is the relative permittivity of the dielectric bounding the

conductor. The total charges per unit length on the conductors

are

Ql=~crFdl
1

Q,= &F dl.

We enforce the condition that

Q,=- Q,.

(7)

(8)

(9)
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Then the capacitance per unit length of the line is given by

(lo)

Since we enforce (9), QI can be replaced by – Qz in (10) if

desired.

III. MOMENT SOLUTION

The solution of (4) and (5) by the method of moments proceeds

as shown in detail in [1]. The procedure is summarized as follows.

We divide all interfaces fl, Iz,. . . . into NI, Nz,. . . . segments.

Segments are indexed 1,2,. ... NT, where NT is the total number

of segments (equal to the sum NI + Nz + . . . ). We approximate

o~ by

%-(P) = : %fn(P) (11)
~=1

where jr are the pulse functions defined by

fn(P) =(:: pon Al.

elsewhere”
(12)

Al,, is the n th segment of the interfaces, and a. are constants to

be determined. We substitute (11) and (12) into (4) to obtain

We point match this equation at the midpoint of each segment of

[I and Iz according to (4), and obtain

(14)

Here, pn,o is the midpoint of the m th segment, and NC= N1 + Nz

is the number of segments on conductors.

At dielectric-to-dielectric interfaces, we substitute (11) and (12)

into (5) and test at the midpoint of each interval. The result is

; a,,E,,,,,( pmlo)+ z, ;:n:>:m,)an, = o, NC~m<N~
11=1 o

?7 # t>l

(15)

where

represents the normal electric field at p~o due to a unit charge

density on the n th segment. In (16), c~l and c~~ are the

permittivities of the two dielectrics bordering the m th segment,

and rzml is the unit normal vector of the segment from side 1 to

side 2, as shown in Fig. 3. Note that special care has to be taken

to evaluate En,,,, asshown in [1], since EM. is evaluated right on

its source segment.

Now (14) and (15) can be written in matrix form as

[+l=[~l[~l+[kl (17)

where [$], [a], and [k] are NT Xl column matrices, and [,S’] is an

NT X NT square matrix. The mth element of [+] is

(

v l<m<Nl

r$lm= ;: Nl<m< NC. (18)

o, NC<m<N~

The m th element of [a] is CYw, an unknown to be determined.

The m th element of [k] is

(19)

The m th element of the square matrix [5’] is

[

~~,lnlp~o-dldl, ~smsN.
“

%!), = %n(Pnto), m> NCandm+n . (20)

\

~ml + (M2

‘2(0(%2 –%) ‘

m> NCandm=n

To simplify (17), we can take the potential of AZ as

V2=0 (21)

i.e., as zero reference, and the potential of Al as

V1=l. (22)

With VI and V2 so chosen, the constant k becomes definite, as

we now show.

Under the pulse approximation of (11), (7) and (8) become

(23)
~=1

Q?= ~ c,nanAln. (24)
n= Nl+l

Substitution of (23) and (24) into (9) gives

(25)
~=1

From (17), we now have

[a]=[s]-’([@l -[k]) (26)

where [S] -1 denotes the inverse matrix of [S]. Therefore

(27)
~=1

where $-~ denotes the nm th element of [~]- 1. Substituting (27)

into (25), and using (18), (19), (21), and (22), we obtain

k=:l(’nA1n}lS;J)

:l(crnA’n$ls;;)” ’28)

After the evaluation of k, [a] can be obtained from (26), then Q1

or Q2 can be obtained from (23) or (24). Thus, the capacitance Cd

can be obtained from (10).

To obtain co, we remove all dielectric-to-dielectric interfaces

and set all c,,, =1. The whole procedure of calculating cd could

be repeated to obtain co. However, to obtain Co, some steps can

be simplified and others eliminated. The form of (17) is un-

changed for the free-space case, but now NT = NC, so we can

delete all elements of order larger than N, in the original column

matrices used for Cd to obtain the new ones for Co. Similarly, we

can delete rows and columns of order larger than NC in the

original [~] to obtain the new [~] for the free-space case. Hence,

it is not necessary to evaluate the elements of a new [@] and [~].

Now, k and Q for the new case are calculated from (23) and (28)

to obtain Co.

Finally, substituting Cd and Co into (l), we obtain the quasi-

TEM characteristic impedance Z.. Other quantities, such as

potential and electric field at various points in space, can be

calculated from UT if desired.
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TABLE I

SAMPLECOMPUTATIONS

Idlip+!t F’IAltUj-jllh m:~ms+r,?dlrlechc- Rctmgu lu-

1

Ill;m$+.,
? IVertica[ Ido.blc

Coaxtal sw+d -sW
Cozx?o[ l:”C i. a tdx

he
SM - he m;cms+hp d,t(e,imc

1. a hx m,u0str8P
1 1 1 1 1 1 1 I

Yb.’
‘;@~%_~ R, pi &, &:

$ !3, =-,23-

n=loz a-50. a=lo

4=350 b=T. O t,=SOO b-125 w- 1.00
:

a.= b 50 w=, ”

2
(7,=200 b= 800 h= loo k= too

d -051
+=0002 b= zoo

b,=07r e .m~o w-loo W=2 00 f“=loo A=[oo ~=ob,

z
k =1732 E,= E.

+=001 t=o..l E=E. t=.,.l hL=04,

E, = L t,= .5.
L= E. .%s . –..,

E.=30E.
E.=96E. t, -135G E,-96E..-. ,.- 1$

..—,.
t= L?02

.

.

-. , ., –... c, == >-t.

E-E. c> -2 55Y. & ~ ,2272.
-., . .

, <n) I

D-lloo

I I I I I I I

:s 3%74 I 4568 I 4604 I 65.02 I 50.43 I 51.62
& I 198,30 I 63.06

!, (JIJ 37 A3 4524 4980 ‘ 6250 4999 4979

: [ 3 ,T.blc z-3] (4, E$531] [4, F93.13) [5, F,j7] [4, Tqbl,41) [ 4, Tib!134)

*There are errors in [4, fig. 3.13]. These data are unreliable.

IV. EXAMPLES AND DISCUSSION

A general computer program has been written using the above

formulation. Input consists of the structure parameters and the

coordinates of the end points of each segment. Output consists of

the charge distribution and the characteristic impedance. Some

examples of computed results are given in Table I. Also given for

comparison are some results obtained by ‘other methods. Our

solution is in good agreement with those obtained by other

methods in most cases.

Although the computer program is written explicitly for the

case of no infinite ground plane, it can be sued to approximate an

infinite ground plane by making one conductor a wide, but finite,

plane. The fact that parts of the ground plane far from the other

conductor are missing should cause negligible error in the result if

the width is taken large. Some examples for the case of a ground

plane were computed using this approximation and are included

in Table I.

The formulation of this paper can be extended to multiconduc-

tor transmission lines. For an N-conductor transmission line,

there are N – 1 quasi-TEM modes [6]. Each corresponds to the

case for which all conductors but one are grounded. The un-

grounded conductor is set at unit potential. The charge on each

conductor then will be equal to an element of the capacitance

matrix for the line [1]. The inductance matrix for the line is Copo

times the inverse of the capacitance matrix obtained by replacing

all dielectrics by free space [1].

An alternative method for solving the matrix equation (17) for

[a] is given in [7]. In that method, the constant k is eliminated

and not determined.
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Correction” to “Theoretical Considerations on the Use

of Circularly Symmetric TE Modes for Digital Ferrite

Phase Shifters”

D. M. BOLLE AND N. MOHSENIAN

Recently, we have become aware of increased publication activ-

ity by authors who refer to the above early paper.l We felt that it

is particularly timely, therefore, to inform those concerned that in

the above paper a few formulas, unfortunately, are in error.

Therefore, we would like to bring attention to the correct version

of the formulas. Equation (6), on p. 422, should appear as

[y: = @p. (l+ X)*– Kz] = ~pOA

while al and d2 in (9) and (10) should” be

al = – ao( a/3)

d2 = –1/4.

Equations (18) and (20), on p. 424, should read

where

and

Bl(a;’qx) F1(a; T1x)– F2(a; T1x)

H1(rY; 7-1.x)“F3(a; T1x)– F2(a; T1x)

B1(a; T2X) F1(a; T2X)– F4(a; T2X)

= H1(a; T2x) “F3(a; T2x)– F4(a; T2x)

&(cX; TX) ‘TJJ~o(T~)/~,(,~)

– jU/@~: = ~~o( ~~/b) ~1( T~)
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