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Fig. 8(a). Comparison of method with SuperCompact PC and measured Sj;.
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Fig 8(b). Companison of method with SuperCompact PC and measured S,;.

decreased value for the substrate thickness. For example, it has
been found that a 195-pm substrate of pure GaAs has almost the
same characteristics as a 200-pm substrate with a 2-um polyimide
layer on top, for the same linewidth. However, it would be
preferable to be able to include a suitable routine which could
calculate single and coupled line parameters for multidielectric
structures.
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Characteristic Impedance of Transmission Lines with
Arbitrary Dielectrics under the TEM Approximation

YANG NAIHENG anD ROGER F. HARRINGTON, FELLOW, IEEE

Abstract —This paper gives a procedure for computing the characteristic
impedances of TEM or quasi-TEM transmission lines with arbitrary cross
sections and arbitrary dielectrics. Special consideration is given to conduc-
tors of finite cross-sectional extent. The solution is obtained by the method
of moments using pulse functions for the expansion of charge density and
point matching for testing. Numerical examples are given and compared
with solutions obtained by other methods.

I. INTRODUCTION

Recently, a general procedure for computing the transmission-
line parameters for a multiconductor transmission line in a
multilayered dielectric medium was published [1]. The solution
was obtained by the method of moments [2] using pulse functions
for expansion of the free and bound charge densities, and point
matching for testing. The solution made use of the fact that the
ground conductor was an infinite conducting plane. If no infinite
conducting plane is present, the solution must be modified.

This paper considers the modification for a two-conductor
transmission line of arbitrary cross section with arbitrary num-
bers of dielectrics. Strictly speaking, if the field exists in two or
more different dielectrics. the transverse electromagnetic (TEM)

Manuscript received September 12, 1985; revised November 5, 1985. This
work was supported in part by Dupont Connector Systems, Camp Hill, PA
17011

Y. Naiheng is with the Nanjing Research Institute of Electronic Technology,
Nanjpng, People’s Republic of China.

R. F. Harrington is with the Department of Electrical and Computer En-
gineering, Syracuse University, Syracuse, NY 13210.

IEEE Log Number 8407188.

0018-9480,/86,/0400-0472$01.00 ©1986 IEEE



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-34, NO. 4, APRIL 1986 473

mode cannot exist, but it will be a good approximation to the
lowest order mode if the cross-sectional dimensions are small in
terms of wavelengths. Our analysis is based on the approximation
that the propagating mode is almost TEM, or quasi-TEM.

II. FORMULATION

Under the quasi-TEM approximation, the electric-field distri-
bution is a two-dimensional electrostatic problem. This static-field
problem for the two-conductor case can be solved for the electro-
static capacitance C,. (The subscript “d > denotes “dielectrics are
present.”) Under the quasi-TEM approximation, the magnetic-
field distribution is a two-dimensional magnetostatic problem.
This static-field problem for the two-conductor case, under the
assumption that all permeabilities are g, (no magnetic media), is
conjugate to the electrostatic problem with all permittivities €.
This electrostatic problem can be solved for the capacitance (.
(The subscript “0” denotes “no dielectrics present,” ie., all
media have permittivity ¢,.) The TEM characteristic impedance
of the structure is then

1

Zy = —==—== ¢)]
° vovcdco

where v, is the velocity of light in free space. It is therefore
sufficient to discuss only the electrostatic problem of a two-con-
ductor transmission line with multiple dielectric regions.

Fig. 1 shows the cross section of the transmission line to be
considered. Here 4; and A, are cross sections of two perfect
conductors, and D,, D,,-- -, are cross sections of dielectrics with
permittivities €., €;,- - - ,respectively. All cross sections are in the
x—y plane. The line is assumed to be uniform in the z direction.
To calculate the capacitance between 4, and A4,, we place equal
but opposite charges on 4; and A,. This charge resides as free
charge on the surfaces of the conductors. Since each dielectric is
homogeneous and without free charge, all bound charge (due to
polarization) resides on the surfaces of the dielectrics. We denote
the interfaces as /;,/,, - -,as shown in Fig, 1. On a conductor-
to-dielectric interface, such as /; and /,, a free-charge density
op exists on the conductor and a bound-charge density o, exists
on the dielectric. The total charge density o, on the conductor
-to-dielectric interface is then

Or=0g+ 0p. (2)

On a dielectric-to-dielectric interface, the total charge density is
bound charge only.

The charge densities on each interface are functions of posi-
tion. The electrostatic potential ¢ at position p due to all charges
o, at position o/ will be the superposition

-1
o(p) = f o (0)n|p—¢|dl' + k (3)
1,

27e,

where k is a constant that depends on the choice of reference
potential. (For two-dimensional problems, the potential at infin-
ity is infinite unless the total net charge is zero.) The integration
in (3) is over all interfaces on which a total charge exists. Fig, 2
illustrates the position vectors and the increment of charge for
the integral (3). The introduction of the constant k into (3) is the
principal difference between the two-conductor case being con-
sidered here and the original case with a ground plane considered
in [1].

If conductor A4; is at potential V; and conductor 4, is at
potential V5, then

Vi pon/

o0 = |} @

pon/,’

D, Eo '[z

0 X

Cross section of a two-conductor transmission line with arbitrary
dielectric regions.

Fig. 1.

0

Fig. 2. Source and field position vectors.

Ein

£, t

€

=1}

Ein

Fig. 3. Reference directions for n and E.

On a dielectric-to-dielectric interface we have continuity of the
normal component of the electric displacement vector, or
€n-Vo(p) =e;nVe,(p), ponlyly, - (5)
Here, subscripts 1 and 2 denote side 1 and side 2 of the interface,
and n is the unit normal vector, as shown in Fig. 3. Equations (4)
and (5), with ¢ given by (3), are integro-differential equations to
be solved for o,(p). ’
Once o4 is found, the free-charge densities on conductors A,
and A4, can be calculated from
o-=¢,0p, onlandl,. (6)
Here, ¢, is the relative permittivity of the dielectric bounding the
conductor. The total charges per unit length on the conductors
are

191 =fl°F dl @)

1

0, =flo,, dl. (8)

2

We enforce the condition that

O0=-0,. (9)
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Then the capacitance per unit length of the line is given by

[
T (10)

Since we enforce (9), Q; can be replaced by — @, in (10) if
desired.

¢ =

IIL

The solution of (4) and (5) by the method of moments proceeds
as shown in detail in [1]. The procedure is summarized as follows.
We divide all interfaces /;,/,,---, into N, N,,---, segments.
Segments are indexed 1,2,- - -, Ny, where Ny is the total number
of segments (equal to the sum N, + N, + ---). We approximate
o, by

MOMENT SOLUTION

Nr

or(p) = Z a,f,(p)

n=1

(11)
where f, are the pulse functions defined by
AOR (1)

A/, is the nth segment of the interfaces, and «, are constants to
be determined. We substitute (11) and (12) into (4) to obtain

1, pon Al
0, elsewhere '

-1

2me

(13)

We point match this equation at the midpoint of each segment of
/; and [, according to (4), and obtain

Nz
= a,| Injp—p)d'+k.
¢(0) L o Inlo =0l

n=1

-1 Nr Vl’
a, [ Injp,o—pldl+k=
Zlnﬁh 10mo — #] {%’

2meq

m< N
N<m<N,~

(14)
Here, p,,, is the midpoint of the mth segment, and N,= N, + N,
is the number of segments on conductors.

At dielectric-to-dielectric interfaces, we substitute (11) and (12)
into (5) and test at the midpoint of each interval. The result is

Nr
Z Q, Emn ( pm()) +

n=1
n#Fm

€ 1€,

=0, N.<m<N,
260(6;'»12 - (ml)

(15)
where

—— 16
27e (16)

Emn(me) = [ nm'VLI 1n|p - p’ldl’]

P=0mo

represents the normal electric field at p,,, due to a unit charge
density on the nth segment. In (16), ¢,; and ¢,, are the
permittivities of the two dielectrics bordering the mth segment,
and n,, is the unit normal vector of the segment from side 1 to
side 2, as shown in Fig. 3. Note that special care has to be taken
to evaluate E, ,, as shown in 1], since E,,, is evaluated right on
its source segment.
Now (14) and (15) can be written in matrix form as

[¢] =[S][a]+[k] (17
where [¢], [a], and [ k] are N X1 column matrices, and [S] is an
Ny X Ny square matrix. The mth element of [¢] is

n

i, l<m<p
b, = Vs, N<m<N,. (18)
0, N <m< Ny

The mth element of [a] is @,,, an unknown to be determined.

The mth element of {k] is

mI

S (19)
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The mth element of the square matrix [S] is

[ mleno—otdl,  1<m<n,
27eq JAL,

Sm” = Emn(pmo)’
€1 T €52

2¢5( €y — €n1)

(20)

m>N,and m#n

, m> N.and m=n

To simplify (17), we can take the potential of 4, as

V,=0 (21)
ie., as zero reference, and the potential of 4, as
v, =1. (22)

With V; and ¥, so chosen, the constant k becomes definite, as
we now show.
Under the pulse approximation of (11), (7) and (8) become

N
Q1= Z ernanAln

n=1

(23)

N,

c

QZ = Z €0y A ln .

n=N;+1

(24)
Substitution of (23) and (24) into (9) gives

N(
Y e,a,Al =0.

n=1

(25)
From (17), we now have

[a] =[S17([$]-[])

where [$]7! denotes the inverse matrix of [S]. Therefore

(26)

Nt
m=1

where S| denotes the nmth element of [S]!. Substituting (27)
into (25), and using (18), (19), (21), and (22), we obtain

N,

M
> (emmn 5 s,:,,:)
N,

S

m=1

k=

(28)

&

n=1

, .
Z (ernAln Z Sﬂ‘ﬂll)
n=1 m=1

After the evaluation of k, [«] can be obtained from (26), then Q;
or 0, can be obtained from (23) or (24). Thus, the capacitance C,
can be obtained from (10).

To obtain C,, we remove all dielectric-to-dielectric interfaces
and set all ¢,, =1. The whole procedure of calculating C,; could
be repeated to obtain C,. However, to obtain C;, some steps can
be simplified and others eliminated. The form of (17) is un-
changed for the free-space case, but now Ny=N,, so we can
delete all elements of order larger than N, in the original column
matrices used for C, to obtain the new ones for C,. Similarly, we
can delete rows and columns of order larger than N, in the
original [ S] to obtain the new [S] for the free-space case. Hence,
it is not necessary to evaluate the elements of a new [¢] and [S].
Now, k and @ for the new case are calculated from (23) and (28)
to obtain .

Finally, substituting C, and C; into (1), we obtain the quasi-
TEM characteristic impedance Z;. Other quantities, such as
potential and electric field at various points in space, can be
calculated from o, if desired.
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TABLEI
SaMPLE COMPUTATIONS
elliptic Partially-fulled| microstrp deelectric - rectangulor microstrp vertical double
{ N Supported -strip d .
coaxia coaxial (e | i@ box slab - Line microstrip electric
Line n a box m.trostrp
o b b )
] £ W= K & ow
ah T | [F a1l 4 i
N e ‘QA" e 1 =% £ g TT[&
L /6> > & & |~
] a=202 dw=5 o0 a=|o 2
% Q=125 a=350 b=To rf;; b=125 W= 1.00 2"3‘: :’=l°2
91 -2 b=8 h =100 = - t 0002 = -0
s b=07 t=ool t =000/ £=¢ t =000/ L=0 40
b, =1732 £, =& e =& £ =&, . £ =E £z E'SS‘E £, = 96¢,
e-& BRIk | g agke | g =238E ErE | Blh | £2a5
Z, ()
s 3774 45 68 46 04 §5.02 50,43 51.62 198.30 63.06
method .
ZW| 37 43 4524 49 80* 62 50 49 99 4979
other
) (37829 | (4, 5530 {4, Fgam)| [5,Fg 7 )[4, bles )| 4, Tbie 3]

*There are errors in [4, fig. 3.13]. These data are unreliable.

IV. EXAMPLES AND DISCUSSION

A general computer program has been written using the above
formulation. Input consists of the structure parameters and the
coordinates of the end points of each segment. Output consists of
the charge distribution and the characteristic impedance. Some
examples of computed results are given in Table 1. Also given for
comparison are some results obtained by other methods. Our
solution is in good agreement with those obtained by other
methods in most cases.

Although the computer program is written explicitly for the
case of no infinite ground plane, it can be sued to approximate an
infinite ground plane by making one conductor a wide, but finite,
plane. The fact that parts of the ground plane far from the other
conductor are missing should cause negligible error in the result if
the width is taken large. Some examples for the case of a ground
plane were computed using this approximation and are included
in Table 1.

The formulation of this paper can be extended to multiconduc-
tor transmission lines. For an N-conductor transmission line,
there are N —1 quasi-TEM modes [6]. Each corresponds to the
case for which all conductors but one are grounded. The un-
grounded conductor is set at unit potential. The charge on each
conductor then will be equal to an element of the capacitance
matrix for the line [1]. The inductance matrix for the line is €,pu,
times the inverse of the capacitance matrix obtained by replacing
all dielectrics by free space [1].

An alternative method for solving the matrix equation (17) for
[a] is given in [7]. In that method, the constant k is eliminated
and not determined.
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Correction to “Theoretical Considerations on the Use
of Circularly Symmetric TE Modes for Digital Ferrite
Phase Shifters”

D. M. BOLLE AnD N. MOHSENIAN

Recently, we have become aware of increased publication activ-
ity by authors who refer to the above early paper.! We felt that it
is particularly timely, therefore, to inform those concerned that in
the above paper a few formulas, unfortunately, are in error.
Therefore, we would like to bring attention to the correct version
of the formulas. Equation (6), on p. 422, should appear as

1 = wpo [(1+ x)° — k2] = wped (6)

while 4, and d, in (9) and (10) should be
ay=—ap(e/3) (9
dy=-1/4. (10)

Equations (18) and (20), on p. 424, should read
Bi(a;mx) F(a;nx)— F(a;nx)
H(a;nx) F(e;mx)— F(a;nx)

_ Bi(a;mx) F(a;nx)— F(a;nx)

" Hy(a;mx) 'F3(a;72x)—E;(a:’rz)C) (18)
where
B(a;mx) =1y Jo(ry) /% (7y)
and
= jwpobH, = yJo(yr/b) (7). (20)
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